(本题6分)已知:如图,△ ABC 是等边三角形, D 是 AB 边上的点,将 DB 绕点D顺时针旋转60°得到线段 D
1个回答

小题1:(1)证明:如图,

∵线段 DB 顺时针旋转60°得线段 DE ,

∴∠ EDB =60°, DE = DB .

∵△ ABC 是等边三角形,

∴∠ B =∠ ACB =60°.

∴∠ EDB =∠ B .

∴ EF ∥ BC .····································· 1分

∴ DB = FC ,∠ ADF =∠ AFD =60°.

∴ DE=DB=FC ,∠ ADE =∠ DFC =120°,△ ADF 是等边三角形.

∴ AD=DF .

∴△ ADE ≌△ DFC .

小题2:(2)由△ ADE ≌△ DFC ,

得 AE = DC ,∠1 = ∠2.

∵ ED ∥ BC , EH ∥ DC ,

∴四边形 EHCD 是平行四边形.

∴ EH=DC ,∠3 = ∠4.

∴ AE=EH . ················································································· 3分

∴∠ AEH =∠1+∠3 = ∠2+∠4 = ∠ ACB =60°.

∴△ AEH 是等边三角形.

∴∠ AHE= 60°.

小题3:(3)设 BH = x ,则 AC = BC = BH + HC = x +2,

由(2)四边形 EHCD 是平行四边形,

∴ ED=HC .

∴ DE=DB=HC=FC =2.

∵ EH ∥ DC ,

∴△ BGH ∽△ BDC .······································································· 5分

.即

.

解得

.

∴ BC =3.