角A,B,C成等差数列
2B=A+C
3B=A+B+C=180°
B=60°
b=AC=2
由正弦定理
a/sinA=b/sinB=c/sinC
a=bsinA/sinB=2sinA/(√3/2)=4√3sinA/3
c=bsinC/sinB=2sinC/(√3/2)=4√3sinC/3
a+c=(4√3/3)[sinA+sinC]
=(4√3/3)[sinA+sin(120°-A)]
=(4√3/3)[sinA+sin120°cosA-cos120°sinA]
=(4√3/3)[(3/2)sinA+(√3/2)cosA]
=4[(√3/2)sinA+(1/2)cosA]
=4[sinAcos30°+cosAsin30°]
= 4sin(A+30°)
所以 A=60°时,
a+c有最大值4
所以 周长的最大值为6