在三角形ABC中,内角A,B,C的对边a,b,c.已知b^2=ac,且cosB=3/4.求.
1个回答

1.a,b,c成等比数列,所以a*c=b^2

根据正弦定理,a/sinA=b/sinB=c/sinC

所以sinA=a/b*sinB,sinC=c/b*sinC

cotA+cotC=cosA/sinA+cosC/sinC

=(cosA*sinC+sinA*cosC)/sinA*sinC

=sin(A+C)/[(a/b*sinB)*(c/b*sinC)]

=sinB/[(a/b*sinB)*(c/b*sinC)]

=1/sinB

=4/(根号7)

2.a,b,c成等比数列,设公比为q,

则b=a*q,c=a*q^2

cosB=(a^2+c^2-b^2)/2*a*c

=(a^2+a^2*q^4-a^2*q^2)/2*a*a*q^2

=(1+q^4-q^2)/2*q^2

=3/4

化简为:2*q^4-5*q^2+2=0

解得:q=1/(根号2),或者q=根号2

向量BA点乘向量BC=a*c*cosB

=a*a*q^2*cosB

=3/2

将cosB和q代入,解得:a=2,此时q=1/(根号2),c=1,a+c=3

或者a=1,此时q=根号2,c=2,

则a+c=3