基础高数二重积分1.∫∫D(x²-y²)dxdy ,0
1个回答

1.∫∫D(x²-y²)dxdy

=∫(0,π)dx∫(0,sinx)(x²-y²)dy

=∫(0,π)dx[x²sinx - (sin³x)/3]

=∫(0,π)[x²(-dcosx) + (sin²x)(dcosx)/3]

=∫(0,π)[(1-cos²x)(dcosx)/3] - x²cosx|(0,π) + ∫(0,π)cosx dx²

=(3cosx-cos³x)/9|(0,π) - x²cosx|(0,π) + 2∫(0,π)x dsinx

=π² - 4/9 + 2xsinx|(0,π) - 2∫(0,π)sinx dx

=π² - 4/9 + 2cosx|(0,π)

=π² - 40/9

2.所围的区域是1/2 < y < 2,1/y < x < 2

∫∫Dye^xydxdy

=∫(1/2,2)ydy∫(1/y,2)e^xydx

=∫(1/2,2)ydy * [e^(2y) - e]/y

=∫(1/2,2)dy * [e^(2y) - e]

=[e^(2y)/2 - ey]|(1/2,2)

=(e^4)/2 - 2e

3.交线是x²+2y²=6-2x²-y²,即x²+y²=2

体积=∫∫D(z1-z2)dxdy

=∫∫D[6-2x²-y²-(x²+2y²)]dxdy

用极坐标代换,令x=rcost,y=rsint

则0