关于二重积分的计算!1.∫∫D4y^2sin(xy)dxdy,y=√(π/2),x=0,y=x,所围成区域,求二重积分2
1个回答

1.∫∫D 4y^2sin(xy)dxdy

=∫[0,√(π/2)]4y^2dy*∫[0,y]sin(xy)dx

=∫[0,√(π/2)]4ydy*∫[0,y]sin(xy)d(xy)

=∫[0,√(π/2)]4y*[-cos(xy)]|[0,y]*dy

=∫[0,√(π/2)]4y*[1-cos(y^2)]*dy

=∫[0,√(π/2)]4ydy - ∫[0,√(π/2)]4y*cos(y^2)*dy

=[2y^2]|[0,√(π/2)] - ∫[0,√(π/2)]2*cos(y^2)*d(y^2)

=2*(π/2) - [2sin(y^2)]|[0,√(π/2)]

=π - [2*sin(π/2)-2*sin0]

=π-2

2.∫[0,a]∫[0,√(a^2-x^2)]√(a^2-x^2-y^2)dxdy

=∫∫D √(a^2-r^2)*rdrdθ

=∫[0,π/2]dθ*∫[0,a]r(a^2-r^2)^(1/2)dr

=(π/2)*(-1/2)∫[0,a](a^2-r^2)^(1/2)d(a^2-r^2)

=(-π/4)*[(2/3)*(a^2-r^2)^(3/2)]|[0,a]

=(-π/4)*[0-(2/3*a^3)]

=π/4*2/3*a^3

=(π/6)*a^3

表达习惯略有不同,