知识问答
最佳答案:1)x=t,y=1+t/2把直线参数方程有参数的放在等号一侧 再用Y-1/X消除T就可以得出2y-x-2=0圆C:x^2+y^2=2y+2x(等式两边同时乘以P
最佳答案:将直线ρcosθ=1与圆ρ=2sinθ分别化为普通方程得,直线x=1与圆x 2+(y-1) 2=1,(6分)易得直线x=1与圆x 2+(y-1) 2=1切于点Q
最佳答案:解题思路:先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆
最佳答案:(1)圆心 C 坐标 (2cosα,2-2cos2α),即坐标 x=2cosα,坐标 y=2-2cos2α=4cos²α=x²;圆心轨迹在抛物线 y=x² 上;
最佳答案:曲线C的极坐标方程为ρsin(θ-π6 )=3,即 ρsinθcosπ6 -ρcosθsinπ6 =3 ,它的直角坐标方程为:3 y-x-6=0 ,点A(2,π
最佳答案:⑴∵曲线C的极坐标方程为ρ=4cosθ∴曲线C的直角坐标方程为(x-2)∧2+y∧2=2即曲线C是以C'(2,0)为圆心,半径为√2的圆⑵∵圆C与直线l相切∴d
最佳答案:解题思路:(1)设极点为O,由该圆的极坐标方程为ρ=4,知该圆的半径为4,又直线l被该圆截得的弦长|AB|为4,所以∠AOB=60°,∴极点到直线l的距离为d=
最佳答案:解题思路:(1)解:由可化为直角坐标方程(1)参数方程为为参数)可化为直角坐标方程(2)联立(1)(2)得两曲线的交点为所求的弦长.
最佳答案:消去参数 t 可得直线 L 的直角坐标方程为 y=√3*(x-2) ,由和角公式得 ρ^2*[(cosθ)^2-(sinθ)^2]=1 ,因此 x^2-y^2=
最佳答案:为了是,根据P、A两点坐标,计算PA间的距离,即|PA|同理,可计算PB间距离,即|PB|(X1,Y1)与(X2,Y2)两点间距离可用勾股定理计算即 D^2=(
最佳答案:N是函数y=t-2√(t-3),t≥3的值域设x=√(t-3)≥0,x²=t-3,t=x²+3∴y=x²-2x+3=(x-1)²+2∵x≥0∴当x=1时,y取得
最佳答案:(1) ρ =4cos θ .(2)2(1)由已知得,曲线 C 的普通方程为( x -2) 2+ y 2=4,即 x 2+ y 2-4 x =0,化为极坐标方程
最佳答案:极坐标系的解法见LS,对高中生来说不太好理解.直角坐标系的解法如下:两个坐标系的转化方程为 x=rcosθ,y=rsinθ 牢记这一点就可以.那么转成直角坐标系
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
最佳答案:曲线ρ(cosθ+sinθ)+2=0,即 x+y+2=0,ρ(sinθ-cosθ)+2=0,即 y-x+2=0,联立方程组,解得 x=0,y=-2,故两曲线的
最佳答案:解题思路:解:(Ⅰ)圆的普通方程是,又;所以圆的极坐标方程是。(Ⅱ)设为点的极坐标,则有解得。设为点的极坐标,则有解得由于,所以,所以线段的长为2.(Ⅰ)(Ⅱ)
最佳答案:把曲线方程 ρ=4cos(θ-π3 ) 化为直角坐标方程为:x 2+y 2=9,把直线方程 ρsin(θ+π6 )=1 转化为直角坐标方程为x+3 y-2=0,