知识问答
最佳答案:⑵设直线L的参数方程为x=2+tcosα,y=tsinα(t为参数)将其代入圆M的方程x∧2+(y+2)∧2=4得t∧2+4(cosα+sinα)t+4=0可知
最佳答案:[-1,3]将两曲线方程化为直角坐标坐标方程,得C 1:,C 2:.因为两曲线有公共点,所以,即-1≤ m ≤3,故 m ∈[-1,3].
最佳答案:10、|AB|=√[(4-3)²+(-π/4-π/3)²]=√(1+49π²/144)直线AB是(y-π/3)/(-π/4-π/3)=(x-3)/(4-3)即(
最佳答案:1)x=t,y=1+t/2把直线参数方程有参数的放在等号一侧 再用Y-1/X消除T就可以得出2y-x-2=0圆C:x^2+y^2=2y+2x(等式两边同时乘以P
最佳答案:解题思路:由题意直线的直角坐标方程为,曲线的普通方程为,联立方程组解得或,因为,所以解为,即交点为.
最佳答案:A.B.C.(1)曲线C表示的为圆心在(2,1),半径为3的圆,那么圆上点到直线距离的最大值为圆心到直线的距离加上圆的半径得到为(2)存在实数满足不等式0 ,,
最佳答案:将直线ρcosθ=1与圆ρ=2sinθ分别化为普通方程得,直线x=1与圆x 2+(y-1) 2=1,(6分)易得直线x=1与圆x 2+(y-1) 2=1切于点Q
最佳答案:(本题满分10分)由,得,, 即圆的方程为, ---------------------------4分又由消,得, --------------------
最佳答案:(1)∵由得:所以曲线的直角坐标方程为它是以为圆心,半径为的圆.(2)代入整理得设其两根分别为、,则
最佳答案:解题思路:曲线C的参数方程为(为参数),则它的普通方程为,直线的极坐标方程为,则它的普通方程为,由点到直线距离公式可得圆心C到直线的距离为,故直线与圆相离.相离
最佳答案:(1)圆心 C 坐标 (2cosα,2-2cos2α),即坐标 x=2cosα,坐标 y=2-2cos2α=4cos²α=x²;圆心轨迹在抛物线 y=x² 上;
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
最佳答案:解题思路:(Ⅰ)利用x=,y=,可把曲线C的极坐标方程转化为直角坐标方程.(Ⅱ)把直线l的参数方程转化为普通方程,求出圆心到直线l的距离,最后利用勾股定理即可求
最佳答案:解题思路:由题意画出图形,利用圆周角是直角,直接求出所求圆的方程.由题意可知,圆上的点设为(ρ,θ)所以所求圆心的极坐标为C(3,[π/6]),半径为3的圆的极