知识问答
最佳答案:可导必连续,连续不一定可导,所以可导函数与连续函数的积函数一定是连续函数,但是不一定可导.例如:f(x)=1,可导;g(x)=|x|在x=0处连续但不可导,而f
最佳答案:lim [√(x+1)-1]/√x 0/0型罗比塔法则=lim √(x)/√(x+1) =0lim 1-e^x =1-1=0∴ y 在x=0连续针对于导数y=1
最佳答案:给你讲解一下函数可导性与连续性的关系:设函数y=f(x)在x处可导,即lim(Δx→0)Δy/Δx=f '(x)存在.由具有极限的函数与无穷小的关系知道Δy/Δ
最佳答案:严格意义上:函数的单调增减性和函数一阶导函数的正负有关,函数在某区间递增的充要条件是该函数的导函数在该区间为正;反之,函数在某区间递减的充要条件是该函数的导函数
最佳答案:正确.左右导数存在且相等为0.这题的分界点是函数的连续点,所以你也可以先求原函数的导函数,再求该导函数在分界点处的极限值.即f'(0)=limf'(x),x→0
最佳答案:第一个x→0时 lim |sinx|=0=|sin0| 所以在0点连续x→0+时 lim |sinx|/x=lim sinx/x=1x→0-时 lim -sin
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:给你两个定理就清楚了:设函数f(z)=u(x,y)+iv(x,y)在区域D内确定,那么f(z)点z=x+iy∈D可微的充要条件是:在点z=x+iy,u(x,y)
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处
最佳答案:函数的解析性指的是一个函数,是否可以知道其解析式,以及其奇偶性,单调性,定义域,值域等相关性质的讨论,是对函数整体变化的研究.函数的可导性指的是,一个函数,在某
栏目推荐: stage是什么意思 数值是什么意思 不告诉你的英语翻译 the four seasons作文 好的健康英语翻译 从小学到大学 led灯制作 波导英语翻译 奇偶函数定义域性质 生物物质能量流动