最佳答案:n从0开始?∑[(-1)^n/3^n]x^n=∑[(-x/3)^n,此为等比级数,所以当|-x/3|<1,即|x|<3时,幂级数收敛,其和函数自然是1/[1-(
最佳答案:1/(1-x)=1+x+x^2+x^3+……+x^n+……上式可由等比数列求各项和(前n项和当n趋向于无穷大时的极限)得到,即1+x+x^2+x^3+……+x^
最佳答案:设f(x)=Σ(n-1)x^n=x^2 Σ(n-1)x^(n-2),对g(x)=Σ(n-1)x^(n-2)逐项积分得:Σx^(n-1)=1/(1-x),|x|
最佳答案:Un=((n+1)/n)*x^n = x^n + 1/n * x^n先对x^n求和,结果为f(x) = 1 + x + x^2+……+x^n = (x^(n+1
最佳答案:应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
最佳答案:分子分母同时乘以二化为[∞∑ n=1][2^n×x^n]/ 2(n!),整理[∞∑ n=1] ﹙2 x﹚^n / (n!)×1/2,由公式e^x= [∞∑ n=
最佳答案:先求f(x)=∑(n+1)x^n积分得:F(x)=C+∑x^(n+1)=C+x/(1-x) , 收敛域为|x|
最佳答案:Un(x)=(x^2)^n*x/n!由e^x=1+x+x^2/2!+...得:e^(x^2)=1+x^2+x^4/2!+...因此xe^(x^2)=x+x^2*
最佳答案:具体解答、解说如下:如果不理解,请参看下面的解说,并注意颜色对应的概念.
最佳答案:∑n(x-1)^n=(x-1)∑n(x-1)^(n-1)设f(x)=∑n(x-1)^(n-1),逐项积分得:∫[1,x]f(x)dx=∫[1,x]∑n(x-1)
最佳答案:∑[x^2n(2n-1)]=x∑[x^(2n-1)(2n-1)] (把x提出来了)设g(x)=∑[x^(2n-1)(2n-1)]一阶导数g'(x)=∑x^(2n
最佳答案:等比级数求和呀∑(x-1)^n=(x-1)/(1-(x-1))=(x-1)/(2-x)
最佳答案:逐项积分得:∑ x^(2n+1)/n!=x∑ x^2n/n!=x(e^(x^2)-1) x属于(-∞,∞) 求导得:原级数=(e^(x^2)-1)+2x^2e^
最佳答案:Sn=[∞∑ n=0] [(2n+1)x^(2n)]积分 Sn dx=[∞∑ n=0] [x^(2n+1)]=x/(1-x^2)因为求和是首项为x,公比为x^2
最佳答案:=2求和(n=0到无穷)x^n/2^n=2/(1-x/2)=4/(2-x),这是必须记住的一个幂级数求和(n=0到无穷)x^n=1/(1-x)
最佳答案:S(x)=∑(n^2)(x^n) |x|
最佳答案:S=∑(n=1到∞)[n(n+1)/2]x^(n-1)积分得:F=∑(n=1到∞)[(n+1)/2]x^n再积分得:G=0.5∑(n=1到∞)x^(n+1)=0
最佳答案:f(x) = ∑ x^n/(n+1)xf(x) = ∑ [x^(n+1)]/(n+1)[xf(x)]' = ∑ x^n所以[xf(x)]'的和函数很好求,就是等
最佳答案:e^x=∑x^n/n!∑[(x-1)^2n]/(n!*2^n)=∑[((x-1)^2/2)^n]/(n!)=e^[(x-1)^2/2]