最佳答案:必要非充分 ,就是说由“f(x)在x0 处连续”可以推出“函数y=f(x) 在点x=x0 处有定义”,这个应该不需要解释了吧.但是“函数y=f(x) 在点x=x
最佳答案:.可导一定连续,连续不一定可导.可导要求一点左右导数存在且相等.连续要求该点有定义,且其极限值等于函数值.
最佳答案:因为是初等函数,就是经常使用的一些函数如幂函数、三角函数、指对数函数等,都存在连续的导函数.
最佳答案:不存在.设定义域为区间[x1,x2],必然f(x1)、f(x2)有界又在定义域为连续函数,必然在(x1,x2)上有界所以f(x)在[x1,x2]有界,值域为闭区
最佳答案:比如一个函数中间像折了一下,f(x)=|x|在x=0就是这样的情况
最佳答案:解题思路:由f(x)在点x=x0处连续的定义,函数f(x)在点x=x0处有定义;但是函数f(x)在点x=x0处有定义,f(x)在点x=x0处不一定连续,分析选项
最佳答案:连续函数是没有间断点的 tan x 不是连续函数 它只是在每个小区间是连续的
最佳答案:函数极值的定义指的是在极值点x0的某个去心邻域内其他的函数值都大于f(x0)或者小于f(x0),与连续没有关系,所以函数在极值点处不一定连续 例如,f(x)=
最佳答案:函数在某点有定义就是能在这个点取值 比如Y=(X-3)/(X-8) ,因为分母为X-3 那么X就不能等于3 ,等于3了 ,分母为0 ,那么这个函数就没有意义了,
最佳答案:连续区间指函数的图象在这个区间内没有断点定义域是指这个映射的所有原象的区间意义是不一样的
最佳答案:已知定义在上的函数的图象是连续不断的,且有如下对应值表:0123[3.10.1-0.9-3那么函数一定存在零点的区间是(   )A、B、C、D、B分析:利用函数
最佳答案:函数的连续点必是有定义的点,这是对的函数的极限存在的点必是有定义的点,这是错的,函数极限存在与否与该点有没有定义无关
最佳答案:奇函数不一定有f(0)=0,可以在0点无定义,只要图形和定义域关于原点对称即可,当然定义域不一定是连续的了,如y=x^3 (x=-1,+1)也可以是奇函数
最佳答案:不可导的函数有一定的特点,一般是在某个点处不可导.而且初等函数都可导 加绝对值的函数可能出现不可导的点,比如y=|x|这个函数,在x=0处,出现了一个“尖点”,
最佳答案:解题思路:依题意,利用零点存在性定理,由图表即可知f(2)•f(3)<0,从而知函数f(x)一定存在零点的区间.∵定义在R上的函数f (x)的图象是连续不断的,
最佳答案:解题思路:函数及其导函数的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′(b)<0,说明函数在区间[a,b]内至少有一个增区间和一个
最佳答案:解题思路:由于f(2)f(3)<0,故连续函数f(x)在(2,3)上有一个零点,同理可得f(x)在(3,4)上有一个零点,在(4,5)上有一个零点,由此得出结论
最佳答案:不连续函数啊……不连续点是可疑点,可疑点还包括极限点、端点.综合考察这些点,就能找到极值点.对问题的回答:可以,当然是可以的.