最佳答案:(1)完全竞争短期均衡时有MC=P,即MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=ST
最佳答案:平均可变成本AVC=(0.04Q^3-0.8Q^2+10Q)/Q=0.04Q^2-0.8Q+10边际成本MC=STC'=0.12Q^2-1.6Q+10
最佳答案:1.由STC=0.1Q3-2Q2+15Q+10得MC=0.3Q2-4Q+15MR=P=55=MCQ=20 TR=P*Q利润=STC-TR当P=AVC时必须停产
最佳答案:1)AP(L)=Q/L=35+8L-L^2MP(L)=35+16L-3L^22)L=6时,代入MP(L)MP(L)=35+96-108>0所以,合理~~
最佳答案:(1)smc=0.3Q^2-4Q+15P=MR=MC 得Q= (最重要的是理解P=MR=MC)(2)smc=0.3Q^2-4Q+15 AVC=0.1Q3-2Q2
最佳答案:你的短期成本函数写错了。应该是STC=0.1*Q的三次方-2*Q的二次方+15*Q+10对Q求一阶倒数,就得到了。Q=7.5是这个厂商的短期均衡产量。STC=5
最佳答案:应该有范围的 第二个那个 书上有 线性函数的市场需求函数 完全竞争是垄断产出的二倍 下面一题 看书上有个图 总收益最大 就是MR=0 而利润最大化则是MR=MC
最佳答案:(1)完全竞争短期均衡时有MC=P,即 MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=S
最佳答案:我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你
最佳答案:(1)当MC=MR时 达到均衡 MC=dTC/dQ=0.3Q^2-4Q+15 MR=P=55 0.3Q^2-4Q+15 =55 可得到产量Q=20 利润=TR-
最佳答案:(1)短期均衡时,短期边际成本等于价格,即MC=0.3Q2(2次方)-4Q+15=55,算得Q=20,即短期均衡产量为20,利润=P*Q=55*20=1100.
最佳答案:(1)由STC=Q2-20Q+100得 SMC=2Q-20完全竞争行业中所有买家和卖家都是价格的接受者,故MR=P再由短期均衡条件SMC=MR,得2Q-20=5
最佳答案:一.MC= 0.3Q^2 - 4Q +15由P=MC知55= 0.3Q^2 -4Q + 15解之得Q=20 利润=1100-310=790二.当价格降到等于平均
最佳答案:(1)STC对Q求导,求得MC=0.3Q²-4Q+15我们知道当P=MC时,厂商能实现利润最大化55=0.3Q²-4Q+15 得Q=20 STC=310 收益R
最佳答案:仅代表个人意见,如有错误,勿打~首先请您检查下您提问中的成本函数是否正确,因为在第二问的计算中,我发觉需要有个负号才能算出正值的Q,如果函数正确,我的第二问解题
最佳答案:由P=MC知Q=20,从而利润=pq-tc=790停产点满足p=MC=AVC,得p=5,故价格下降为5时必须停产
最佳答案:(1)完全竞争厂商利润最大化的条件是MR=MC=P由STC=0.1Q^3-2Q^2+15Q+10可得SMC=0.3Q^2-4Q+15.P=55=SMC,解之得Q