最佳答案:AX=0只有零解,可推出: R(A)= N.即A的秩为N.而A可为k*N矩阵, 其中k>=N.即A不一定是N阶方阵.
最佳答案:A=0;因为设S为AX=0的解集.则有rank(A)+rank(S)=n;此条证明可参考任何课本.又因为有n个线性无关解,因此rank(S)=n;从而rank(
最佳答案:解题思路:直接根据n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n以及非齐次线性方程组与其导出组的解的关系来选择答案.由于n元线性方程组Ax=b
最佳答案:N元齐次线性方程组有非零解的充要条件是系数矩阵的秩小于N,其余的都可以由此推出.
最佳答案:设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
最佳答案:A是零矩阵.原因:Ax=0的n个线性无关的解向量与n维基本向量组ε1,ε2,...,εn等价所以 ε1,ε2,...,εn 也是AX=0的解逐一代入可知 A =
最佳答案:n元线性方程组AX=b有唯一解的充分必要条件是 r(A) = r(A,b) = nr(A) = n 并不能保证 r(A) = r(A,b)比如 增广矩阵 =1
最佳答案:举个例子,x+y+z=0对应矩阵A为1*3的,r(A)=1=m,但是显然这个方程有非零解.从理论上说,r(A)
最佳答案:两个方程组有公共非零解等价于合拼后的方程组系数矩阵行列式为零因为如果系数矩阵行列式为零说明合并后的方程组有非零解,那么此解一定也是各个方程的解如果两个方程组有公
最佳答案:解题思路:直接根据齐次线性方程组解的相关定理,直接得出.由于齐次线性方程组AX=0,其中A是n阶矩阵,r(A)=r<n∴将A施行初等行变换,化成行最简形矩阵,其
最佳答案:1 充分性.因为|A|不等于0,故A可逆,X=A^(-1)*B.2 必要性.由于AX=B对于任意B有解,则r(AiB)=r(A),且r(AiB)=n,故r(A)
最佳答案:AX=B对于任意B有解任一n维列向量可由A的列向量组线性表示A的列向量组与n维基本向量组ε1,ε2,...,εn等价A的列向量组线性无关|A| ≠ 0.
最佳答案:设 α 为W中任一向量则 A'α=0则 α 与 A' 的行向量正交即 α 与 A 的列向量正交即知 W 是由与A的列向量正交的向量构成的b与W正交b是A的列向量
最佳答案:提问意义不明 Aij 怎么了 什么叫所含向两个数我的猜测:Aij不等于0 那么(Ai1,Ai2,..,Ain) 为 Ax=0 的一个非零解
最佳答案:第一个正确,第二个错误,应该是|A|=0.第一个结论适用于任意的齐次线性方程组,第二个结论考虑是系数矩阵为方阵的齐次线性方程组,把第一个结论应用到系数矩阵为方阵