最佳答案:直接按定义做就是了.对D上的任何一点(x0,y0),任取e>0,存在d1>0使得当|x-x0|
最佳答案:因为是初等函数,就是经常使用的一些函数如幂函数、三角函数、指对数函数等,都存在连续的导函数.
最佳答案:你是不是认为函数f(x,y)只在要讨论的区域D上才有定义啊?不是这样的,例如函数f(x,y)=xy,我们取区域D为圆x^2+y^2≤1,这是一个闭区域,但是f(
最佳答案:1、y=|x|在x=0处连续但不可导;2、分段函数y=x²sin(1/x) x≠00 x=0这个函数在x=0可导,但是导函数在x=0不连续.希望可以帮到你,如果
最佳答案:函数及在上具有一阶连续偏导数p(x,y)和q(x,y)当然连续由格林公式得到的: ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxd
最佳答案:这个是个结论,证明的话自己看辅导书,同济教材好像也有的,记住就是了,
最佳答案:函数Z=f(x,y)的偏导数在区域D内连续是Z=f(X,y)在D内可微的充分条件,但不是必要条件.一楼的错误,在任何一本高等数学上都有这个命题的证明.
最佳答案:特别简单,由f(x,y)在(x,y)点连续知,存在领域U_1((x,y)),使得领域内的任意点(x',y')都有|f(x',y')-f(x,y)|
最佳答案:∫∫{[√f(x)+√f(y)]/[√f(x)+√f(y)]}dxdy=π∫∫{√f(x)/[√f(x)+√f(y)]}dxdy=∫∫{√f(y)/[√f(x)
最佳答案:首先说介值定理在联通区域上用没有问题,不知道你们老师怎么想的,太水了.第二,参考资料中用了另一种证明,思想是拓扑学的,手法是数学分析的,你能看懂.见参考资料
最佳答案:定义区域包含定义域,定义域只能为一维,比如[1,2]表示长度为1的线段,而定义区域可以是多维的,比如说圆形区域(二维)、球域(三维)等
最佳答案:这个就是方向导数的定义了,你可能没有真正明白方向导数的含义.只是知道对X 或对Y 求导 即在X轴或Y轴上的增量计算当挪到空间中去时就变成向量导数了 此时通过对X