最佳答案:由函数的连续性定义到一致连续性定义的理解思路(因为数学语言很严谨,但却不丰富,故不少朋友对这两个定义理解起来都比较吃力,其实这两个定义有很大的差别,现在以我的理
最佳答案:没题吗?分段函数的话一般都会有x的取值范围的,在每个范围都求一下极限,左右极限相等的话就连续了
最佳答案:lim [√(x+1)-1]/√x 0/0型罗比塔法则=lim √(x)/√(x+1) =0lim 1-e^x =1-1=0∴ y 在x=0连续针对于导数y=1
最佳答案:这个函数在x=0处连续但不可导.
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
最佳答案:函数在某点有定义就是能在这个点取值 比如Y=(X-3)/(X-8) ,因为分母为X-3 那么X就不能等于3 ,等于3了 ,分母为0 ,那么这个函数就没有意义了,
最佳答案:f(x0)=0,f(x0+)=f(x0-)=0因此f(x)在x0处连续x>x0时,f(x)=x-x0,f'(x)=1,即f'(x0+)=1x
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:f(x)在x=0点的左极限为1,右极限为-1,所以在0点不连续,不连续也不可导.
最佳答案:连续性是局部性质,一般只对单点讨论,说函数在一个集合上连续也只不过是逐点连续.一致连续性是整体性质,要对定义域上的某个子集(比如区间)来讨论,表明了整体的连续程
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:连续就是不间断,但函数在某点连续时极限不一定存在,比如y=lxl在x等于0处的极限就不存在,在x从负无穷趋于0是极限是负1,在x从正无穷趋于0时极限是正一,这样
最佳答案:用定义做连续,左右极限存在且等于函数值limx→2+ f(x)=ln4=f(2)limx→2- f(x)=ln4=f(2)可导,左右导数都存在切相等limx→2
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处
最佳答案:在平面上连续.在除原点外其他点处无穷阶可微.原点处:任意阶方向导数(就是沿某一方向的偏导数)存在,但不可微.
最佳答案:xsin1/x在算极限时,应用算xsin1/x除以x然后求它的极限,也就是求sin1/x的极限,求的极限不存在.即在x=0处不连续.
最佳答案:不连续也不可导.xsin1/x可用洛比达法则或者泰勒展开知其极限为1,而函数值是0,所以不连续.至于计算导数则也很简单.lim(Dx*sin1/Dx-0)/(D