最佳答案:设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。这就是定义所以只要能求出导函数就有其极限点,而不是楼主
最佳答案:解题思路:结合极值的定义可知必要性成立,而充分性中除了要求f′(x0)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立.如y
最佳答案:解题思路:由极值的定义知,函数在某点处有极值,则此处导数必为零,若导数为0时,此点左右两边的导数符号可能相同,故不一定是极值,由此可以得出结论,极值点处导数比较
最佳答案:答案错,是必要不充分.由f'(x0) = 0 推不出极值点,因为有可能是拐点(说明不充分);f(x)在R上可导,可以说明极值点处一定有f'(x0) = 0(说明
最佳答案:解题思路:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的知识可得xg(x)在(0,+∞)上是递增函数,xg
最佳答案:这种“极值”需要排除的,只有在定义域内才有意义这样的结论说明函数在其定义域内极值无0点,因此函数是单调函数,没有极值
最佳答案:解题思路:y=f(x)在点(1,f(1))处的切线的斜率为f′(1)=limx→0f(x+1)−f(1)x=2limx→0f(x+1)−f(1)2x.∵f(x)
最佳答案:如果端点在函数的定义域里,则取端点值,不在定义域内则不能选取端点值