(1)解:作DF⊥Y轴于F,则∠DBF+∠BDF=90°;又∠DBF+∠ABO=90°.∴∠BDF=∠ABO(同角的余角相等);又BD=BA,∠DFB=∠BOA=90°.∴⊿DFB≌⊿BOA(AAS),DF=BO=3,BF=AO=2.∵DF=CB=3,∠DEF=∠CEB,∠DFE=∠CBE=90°.∴⊿DFE≌⊿CBE(AAS),EF=BE=BF/2=1.则OE=OB+BE=3+1=4,即点E为(0,4).
(2)【原题中表达不妥,应该是过点B作CD的垂线.】证明:作AM⊥直线BF于M,ON⊥直线BF于N.∵∠ABM=∠BDF(均为∠DBF的余角);AB=BD,∠AMB=∠BFD=90°.∴⊿BMA≌⊿DFB(AAS),AM=BF.同理可证:⊿BNO≌⊿CFB,ON=BF.∴AM=ON;又∠AMG=∠ONG=90度,∠AGM=∠OGN.故⊿AMG≌⊿ONG(AAS),AG=OG.