长方体AC1中,底面ABCD是正方形,变长为4cm,高AA1=3cm,E,F分别是B1C1,C1D1的中点,在侧面BCC
3个回答

解析:主要使用余弦定理来解答.

∵E为B1C1中点,且 EG和B1C1成45°角,

∴ 点G在: ① BB1的三分之一处,且BG1=1/3BB1,BG1=1cm,

② CC1的三分之一处,且CG2=1/3CC1,BG2=1cm,

① 在△EFG1中,有 EF=√ [ (EC1)²+(FC1)² ] = 2√2,

EG1=√ [ (EB1)²+(B1G1)² ] = 2√2,

FG1=√ [ (FB1)²+(B1G1)² ] = √ [(FC1)²+(C1B1)²+(B1G1)²] = 2√6,

由余弦定理有 cos∠FEG1= [(EF)²+(FG1)²-(EG1)²] / 2(EF)*(FG1)

= (√3)/2,

∴ ∠FEG1 = 150°.

② 在△EFG2中,有 EF=√ [ (EC1)²+(FC1)² ] = 2√2,

EG2=√ [ (EC1)²+(C1G2)² ] = 2√2,

FG2=√ [ (FC1)²+(C1G2)² ] = 2√2,

由余弦定理有 cos∠FEG2 = [(EF)²+(FG2)²-(EG2)²] / 2(EF)*(FG2)

=1/2 ,

∴ ∠FEG2 = 60°.

希望可以帮到你、