1、∵AD⊥BC,CE⊥AB
∴∠AEF=∠CDF=90°
∵∠AFE=∠CFD
∴∠BAD=90°-∠AFE,∠BCE=90°-∠CFD
∴∠BAD=∠BCE
2、∵∠BAD=∠FAE
∠ADB=∠AEF=90°
∴△AEF∽△ABD
∴EF/BD=AF/AB (AF=√89) (BE=EF=5)
BD=EF×AB/AF=5×13/√89=65√89/89
∴勾股定理:AD²=AB²-BD²=13²-(65√89/89)²=13²×8²/89
AD=104√89/89
那么DF=AD-AF=104√89/89- 65√89/89=39√89/89
∵易得△AEF∽△CDF
∴FC/AF=DF/EF
FC=AF×DF/EF=√89×39√89/89 ÷5=39/5=7.8