过点A作AM⊥BE于M,AN⊥CD于N
∵∠BAE=∠CAE+∠BAC,∠DAC=∠BAD+∠BAC,∠BAD=∠CAE
∴∠BAE=∠DAC
∵AB=AD,AC=AE
∴△ABE≌△ADC (SAS)
∴BE=CD,∠ABE=∠ADC
∴∠DAE=∠BDC+∠DBE
=∠BDC+∠ABE+∠ABD
=∠BDC+∠ADC+∠ABD
=∠ADB+∠ABD
=180-∠BAD
=180-a
∵AM⊥BE,AN⊥CD
∴S△ABE=BE×AM/2,S△ADC=CD×AN/2
∴BE×AM/2=CD×AN/2
∴AM=AN
∴AF平分∠DAE
∴∠AFE=∠DAE/2=90-a/2