已知圆c关于y轴对称,经过抛物线y2=4x的焦点,且被直线y=x分成两段弧长之比为1:2,求圆c的方程.
1个回答

解题思路:根据题意设出圆的标准方程,圆c关于y轴对称,经过抛物线y2=4x的焦点,被直线y=x分成两段弧长之比为1:2,写出a,r的方程组,解方程组得到圆心和半径.

设圆C的方程为x2+(y-a)2=r2

∵抛物线y2=4x的焦点F(1,0)

∴1+a2=r2

又直线y=x分圆的两段弧长之比为1:2,

可知圆心到直线y=x的距离等于半径的[1/2];

|a|

2=

|r|

2 ②

解①、②得a=±1,r2=2

∴所求圆的方程为x2+(y±1)2=2

点评:

本题考点: 圆的标准方程.

考点点评: 本题考查求圆的标准方程,在题目中有一个条件一定要注意,即圆c关于y轴对称,这说明圆心在y轴上,设方程的时候,要引起注意.