已知三角形ABC为等边三角形,延长BC到D,延长BA到E,连接EC,AE=BD,请问:EC与ED的关系?
1个回答

证明:(方法一)延长CD到F,使DF=BC,连结EF

∵AE=BD

∴AE=CF

∵DABC为正三角形

∴BE=BF 角B=60°

∴DEBF为等边三角形

∴角F=60° EF=EB

在DEBC和DEFD中

EB=EF(已证)

角B=角F(已证)

BC=DF(已作)

∴三角形EBC≌三角形EFD (SAS)

∴EC=ED (全等三角形对应边相等)

(方法二)过D作DF‖AC交AE于F

∴角1=角2 (两直线平行,同位角相等)

∴角3=角4=60°

∵三角形ABC为等边三角形

∴角B=60°

∴三角形FBD为等边三角形

∴FD=BD

∵BD=AE

∴AE=FD

∴BF=BD=AE

∴BF=AE

∴BF-AF=AE-AF (等量减等量差相等)

∴AB=EF ∴EF=AC

在三角形EAC和三角形DFE中

AE=FD(已证)

角1=角2(已证)

AC=EF(已证)

∴三角形EAC≌三角形DFE

∴EC=ED (全等三角形对应边相等)