(1) ∠AGE=∠BGD=∠ABG+∠BAG
∠AEG=∠EBC+∠ECB
AB=AC,∠BAC=90°,∴∠ACB=∠BAD=45°
而AE平分∠ABC,∴∠ABG=∠EBC
∴∠AGE=∠AEG,即AG=AE
(2) 设BE中点为M,连接AM,AF
∵∠BAC=∠BFC=90
∴B,A,F,C四点共圆,∴∠FAC=∠FBC=ABM
而AM=BM,∴∠ABM=∠BAM,∴∠FAC=∠MAB
同样∠ABM=∠ACF,∴△ABM∽△ACF
又AB=AC,∴△ABM≌△ACF,∴AM=AF
即AM=BM=AF=CF,∴BE=2BM=2CF