y=√3sinωx+cosωx
=2(√3/2sinωx+1/2cosωx)
=2(sinωxcosπ/6+cosωxsinπ/6)
=2sin(ωx+π/6)
因为y=2sin(ωx+π/6)的图像与直线y=2的两个邻交点的距离等于π,
所以最小正周期T=π,故ω=2π/T=2,f(x)=2sin(2x+π/6).
(1)当2kπ-π/2≤2x+π/6≤2kπ+π/2,即kπ-π/3≤x≤kπ+π/6 (k∈Z)时,f(x)单调递增,
当2kπ+π/2≤2x+π/6≤2kπ+3π/2,即kπ+π/6≤x≤kπ+2π/3 (k∈Z)时,f(x)单调递减,
所以f(x)的递增区间是[kπ-π/3,kπ+π/6],递减区间是[kπ+π/6,kπ+2π/3] (k∈Z).
(2)若X∈(0,π/2),则2x+π/6∈(π/6.7π/6),2sin(2x+π/6)∈(-1,2],
即f(x)的值域是(-1,2].