已知函数y=√(3)sinWX+cosWX(W>0),y=f(X)的图像与直线y=2的两个邻交点的距离等于π
1个回答

y=√3sinωx+cosωx

=2(√3/2sinωx+1/2cosωx)

=2(sinωxcosπ/6+cosωxsinπ/6)

=2sin(ωx+π/6)

因为y=2sin(ωx+π/6)的图像与直线y=2的两个邻交点的距离等于π,

所以最小正周期T=π,故ω=2π/T=2,f(x)=2sin(2x+π/6).

(1)当2kπ-π/2≤2x+π/6≤2kπ+π/2,即kπ-π/3≤x≤kπ+π/6 (k∈Z)时,f(x)单调递增,

当2kπ+π/2≤2x+π/6≤2kπ+3π/2,即kπ+π/6≤x≤kπ+2π/3 (k∈Z)时,f(x)单调递减,

所以f(x)的递增区间是[kπ-π/3,kπ+π/6],递减区间是[kπ+π/6,kπ+2π/3] (k∈Z).

(2)若X∈(0,π/2),则2x+π/6∈(π/6.7π/6),2sin(2x+π/6)∈(-1,2],

即f(x)的值域是(-1,2].