如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC的延长线于点E,连接BC.
1个回答

解题思路:(1)由BC∥CD,AB⊥CD,可证AB⊥BE,从而可证BE为⊙O的切线;

(2)由垂径定理知:CM=[1/2]CD,在Rt△BCM中,已知tan∠BCD和CM的值,可将BM,CM的值求出,由

BC

=

BD

,可知:∠BAC=∠BCD,在Rt△ACM中,根据三角函数可将AM的值求出,故⊙O的直径为AB=AM+BM.

(1)证明:∵BE∥CD,AB⊥CD,

∴AB⊥BE.

∵AB是⊙O的直径,

∴BE为⊙O的切线.

(2)∵AB是⊙O的直径,AB⊥CD,

∴CM=[1/2]CD,

BC=

BD,CM=[1/2]CD=3,

∴∠BAC=∠BCD.

∵tan∠BCD=[BM/CM]=[1/2],

∴BM=[3/2],

∵[CM/AM]=tan∠BCD=[1/2].

∴AM=6.

∴AB=AM+BM=7.5.

点评:

本题考点: 切线的判定;解直角三角形.

考点点评: 本题主要考查学生对圆、三角函数、以及解直角三角形的运算能力.