(1)因acosc+1/2c=b,则2RsinAcosC+(1/2)×2RsinC=2RsinB=2Rsin(A+C)=2RsinAcosC+2RcosAsinC
因左右相等,则cosA=1/2,A=60°
(2)周长L=a+ b +c=1+b +c=1+(3/2)c+cosC
因2RsinA=1且A=60°,则 R=1/√3
则L=a+ b +c=1+b +c=1+(3/2)c+cosC
=1+3RsinC+cosC
=1+2sin(C+30°)
由此得L=1+2sin(C+30°)
因C∈(0°,120°)
2sin(C+30°)∈(1,2]故
L)∈(2,3]
此即所求