某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(
1个回答

设楼房每平方米的平均综合费用为f(x)元,

(x≥10,x∈Z +),

下面证明g(x)在[10,+∞]的单调性,

在定义域内任取x 1<x 2,则有

而存在

①和

②两种可能,

∴在同一区间,x 1,x 2的值可以非常接近,且都靠近15时,x 1,x 2的值就非常靠近225了,

反之,如果x 1,x 2的值分布在15的两侧,则x 1x 2的值就会出现不确定的结果,即有些大于15,有些小于15,可以而且必须在15划分单调区间;

故当x 1<x 2=15 时,函数单调递减,

当15<x 1<x 2时,函数是增函数,

故g(x)在[10,15]上递减,在[15,+∞]上递增,

所以函数在[10,+∞]的最小值是在x=15处取得,即f(15)=2000,

答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。

相关问题