△ABC的内角A,B,C所对应的边分别为a,b,c.
1个回答

解题思路:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;

(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.

(Ⅰ)∵a,b,c成等差数列,

∴2b=a+c,

利用正弦定理化简得:2sinB=sinA+sinC,

∵sinB=sin[π-(A+C)]=sin(A+C),

∴sinA+sinC=2sinB=2sin(A+C);

(Ⅱ)∵a,b,c成等比数列,

∴b2=ac,

∴cosB=

a2+c2−b2

2ac=

a2+c2−ac

2ac≥[2ac−ac/2ac]=[1/2],

当且仅当a=c时等号成立,

∴cosB的最小值为[1/2].

点评:

本题考点: 余弦定理;正弦定理.

考点点评: 此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.