(2010•湖北模拟)在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是(  )
1个回答

解题思路:根据三角形三个内角和为180°,把角C变化为A+B,用两角和的正弦公式展开移项合并,公式逆用,得sin(B-A)=0,因为角是三角形的内角,所以两角相等,得到三角形是等腰三角形.

由2sinAcosB=sinC知2sinAcosB=sin(A+B),

∴2sinAcosB=sinAcosB+cosAsinB.

∴cosAsinB-sinAcosB=0.

∴sin(B-A)=0,

∵A和B是三角形的内角,

∴B=A.

故选B

点评:

本题考点: 两角和与差的正弦函数.

考点点评: 在三角形内会有一大部分题目出现,应用时要抓住三角形内角和是180°,就有一部分题目用诱导公式变形,对于题目中正用、逆用两角和的正弦和余弦公式,必须在复杂的式子中学会辨认公式应用公式.