(1)A,B,C依次成等差数列,则2B=A+C,又A+B+C=180
所以A=30,B=60,C=90
cos^2A+cos^2B=cos^2(30)+cos^2(60)=(根号3/2)^2+ (1/2)^2=3/4+1/4=1
(2) C.tanB+tanC
因为sinA=sin[180-(B+C)]=sin(B+C)=sinBcosC+cosBsinC
又sinA=cosBcosC
所以cosBcosC=sinBcosC+cosBsinC
两边同时除以cosBcosC
得1=tanB+tanC
(3)cos(π/5)*cos(2π/5)= 1/2[cos(π/5+2π/5)+cos(π/5-2π/5)]