如图,在Rt△OAB中,OA=8,OB=6,点C在OA上,AC=2,⊙P的圆心P在线段BC上,且与⊙P与边AB,AO都相
收藏:
0
点赞数:
0
评论数:
0
1个回答

解题思路:设⊙P与边AB,AO分别相切于点F、E,连接PE、PF、AP,由条件可求出OC、AB,从而得到∠PCE=45°,进而有PE=CE,然后用面积法可求出PE的长,进而可以求出点P的坐标,把点P的坐标代入反比例函数的解析式就可求出k的值.

设⊙P与边AB,AO分别相切于点F、E,连接PE、PF、AP,如图所示,

则有PF⊥AB,PE⊥OA,PE=PF.

∵∠AOB=90°,OA=8,OB=6,AC=2,

∴OC=6=OB,AB=10.

∴∠OBC=∠OCB=45°.

∴∠EPC=45°=∠ECP.

∴PE=CE.

∵S△ABC=S△ABP+S△ACP

∴[1/2]AC•OB=[1/2]AB•PF+[1/2]AC•PE.

∴[1/2]×2×6=[1/2]×10×PE+[1/2]×2×PE.

解得:PE=1.

∴CE=PE=1.

∴OE=OC-CE=6-1=5.

∴点P的坐标为(5,1).

∵反比例函数y=[k/x](k≠0)的图象经过点P(5,1),

∴k=5×1=5.

故答案为:5.

点评:

本题考点: 圆的综合题;待定系数法求反比例函数解析式;等腰三角形的判定;勾股定理;切线的性质.

考点点评: 本题考查了切线的性质、等腰三角形的判定、用待定系数法求反比例函数的解析式、勾股定理等知识,在求PE长度时巧妙地运用了面积法,而这种方法是求垂线段长度常用的一种方法,应掌握它.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识