已知函数f(x)=2mx-m^2+1/(x^2+1)
1个回答

f(x)=(x^2+1)/(2mx-m^2+1),(x€r)

f(x)导函数f'(x)=[(x^2+1)'(2mx-m^2+1)-(x^2+1)(2mx-m^2+1)']/(2mx-m^2+1)^2

=[2x×(2mx-m^2+1)-(x^2+1)×2m]/(2mx-m^2+1)^2

=[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2

令f'(x)=0,则[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2=0,mx^2-(m^2-1)x-m=0

b^2-4ac=[-(m^2-1)]^2-4m×(-m)

=m^4-2m^2+1+4m^2

=(m+1)^2

∴x={-[-(m^2-1)]±√(m+1)^2}/2m

∵m>0

∴x=(m+1)/2 或x=(m^2-m-2)/2m

又∵(m+1)/2-(m^2-m-2)/2m=(m+1)/m>0

∴(m+1)/2>(m^2-m-2)/2m

当f'(x)>0时,x<(m^2-m-2)/2m,x>(m+1)/2

当f'(x)<0时,(m^2-m-2)/2m<x<(m+1)/2

∴当x€(-∞,(m^2-m-2)/2m)时,f(x)单调递增

当x€((m^2-m-2)/2m,(m+1)/2),f(x)单调递减

当x€((m+1)/2,+∞)时,f(x)单调递增

∴f(x) 单调递增区间为[-∞,(m^2-m-2)/2m]或[(m+1)/2,+∞)]

f(x)单调递减区间为[^2-m-2)/2m,(m+1)/2]

当x=(m^2-m-2)/2m有极大值f((m^2-m-2)/2m)= -(m^4-2m^3+4m+4)/(4m^3+4m^2)

当x=(m+1)/2有极小值f((m+1)/2))=(m^2+2m+5)/(m+1)