填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、B
1个回答

(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,

∴△ABC ∽ △EDC,

∴∠CBD=∠CAE,

∴∠AFB=180°-∠CAE-∠BAC-∠ABD

=180°-∠BAC-∠ABC

=∠ACB,

∴∠AFB=60°,

同理可得:∠AFB=45°;

(2)∵AB=AC,EC=ED,∠BAC=∠CED,

∴△ABC ∽ △EDC,

∴∠ACB=∠ECD,

BC

DC =

AC

EC ,

∴∠BCD=∠ACE,

∴△BCD ∽ △ACE,

∴∠CBD=∠CAE,

∴∠AFB=180°-∠CAE-∠BAC-∠ABD,

=180°-∠BAC-∠ABC=∠ACB,

∵AB=AC,∠BAC=α,

∴∠ACB=90°-

1

2 α ,

∴∠AFB=90°-

1

2 α .

故答案为:∠AFB=90° -

1

2 α .

(3)图4中:∠AFB=90° -

1

2 α ;

图5中:∠AFB=90°+

1

2 α .

∠AFB=90° -

1

2 α 的证明如下:

∵AB=AC,EC=ED,∠BAC=∠CED,

∴△ABC ∽ △EDC,

∴∠ACB=∠ECD,

BC

DC =

AC

EC ,

∴∠BCD=∠ACE,

∴△BCD ∽ △ACE,

∴∠CBD=∠CAE,

∴∠AFB=180°-∠CAE-∠BAC-∠ABD,

=180°-∠BAC-∠ABC=∠ACB,

∵AB=AC,∠BAC=α,

∴∠ACB=90°-

1

2 α ,

∴∠AFB=90°-

1

2 α .

∠AFB=90°+

1

2 α 的证明如下:

∵AB=AC,EC=ED,∠BAC=∠CED,

∴△ABC ∽ △EDC,

∴∠ACB=∠ECD,

BC

DC =

AC

EC ,

∴∠BCD=∠ACE,

∴△BCD ∽ △ACE,

∴∠BDC=∠AEC,

∴∠AFB=∠BDC+∠CDE+∠DEF,

=∠CDE+∠CED=180°-∠DCE,

∵AB=AC,EC=ED,∠BAC=∠DEC=α,

∴∠DCE=90°-

1

2 α ,

∴∠AFB=180°-(90°-

1

2 α )=90°+

1

2 α .