f(x+y,y/x)=x^2-y^2
1个回答

令x+y=t,y/x=u

则y=xu代入x+y=t,得

x+xu=t

(1) u≠-1,即y≠-x,t≠0时,

x=t/(1+u)

y=xu=ut/(1+u)

∴f(t,u)=f(x+y,y/x)=x^2-y^2=[t/(1+u)]^2-[ut/(1+u)]^2

=t^2(1-u^2)/(1+u)^2=t^2(1-u)/(1+u) (t≠0,u≠-1)

∴f(x,y)=x^2(1-y)/(1+y) (x≠0,y≠-1)

(2) u=-1时,y=-x,t=0,则

f(0,-1)=x^2-y^2=x^2-(-x)^2=0

综上可知

f(x,y)=x^2(1-y)/(1+y) (y≠-1)

=0 (y=-1)