直线l1:x+ay+3=0和直线l2:(a-2)x+3y+a=0互相平行,则a的值为______.
1个回答

解题思路:由已知中,两条直线的方程,l1:x+ay+3=0和l2:(a-2)x+3y+a=0,我们易求出他们的斜率,再根据两直线平行的充要条件,即斜率相等,截距不相等,我们即可得到答案.

∵直线l1:x+ay+3=0和l2:(a-2)x+3y+a=0,

∴k1=−

1

a,k2=[2−a/3],

若l1∥l2,则k1=k2

即 −

1

a=[2−a/3],

解得:a=3或a=-1,

又∵a=3时,两条直线重合,

故答案为-1.

点评:

本题考点: 直线的一般式方程与直线的平行关系.

考点点评: 本题考查的知识点是直线的一般式方程与直线的平行关系,其中两个直线平行的充要条件,易忽略截距不相等的限制,而错解为-1或3.