你好!
(1)过M作MN⊥BC于N
则∠AME+∠EMN=90°
∠GMN+∠EMN=90°
∴∠AME=∠GMN
又∠A=∠MNG=90°
∴△AME∽△NMG
tan∠MEG = MG/ME = MN/AM = 4
(2)由(1)得MG=4ME
∴S(△EMG) = 1/2 * ME * MG = 2ME² = 2(x²+1)
∵G在BC延长线上
∴NG=4x > NC=1 即 x > 1/4
又E在AB上,∴x≤4
故 1/4 < x ≤ 4
(3)过P作PH⊥BG于H,过E作ER⊥CF于R
∵P是中点
∴PH=1/2 MN =2
∵△PGC∽△EFQ
且PH=ER=2【对应高相等】
∴△PGC≌△EFQ
∴FQ=CG=4x-1
QD = FQ-FD = 4x-1-x = 3x-1
CQ = 4 - QD = 5-3x
又△GCQ∽△GBE
∴GC/GB = CQ/BE
(4x-1) / (4x+1) = (5-3x) / (4-x)
解得 x = (3√2)/4
∴y= 2(x²+1) = 17/4