已知函数f(x)=asinwx+bcoswx的最小正周期为2,当x=3分之1时,f(x)取得最大值为2.
1个回答

f(x) = a sin(wx) + b cos(wx)

T = 2π/w = 2 => w = π

f(x) = √(a² + b²) sin(wx + arctan(b/a))

f(1/3) = 2

π/3 + arctan(b/a) = π/2

arctan(b/a) = π/6

b/a = 1/√3

√3 b = a

√(a² + b²) = 2

a² + b² = 4

(√3 b)² + b² = 4

3b² + b² = 4

b = 1

a = √3

f(x) = √3 sin(πx) + cos(πx) = 2sin(πx + π/6)

-----------------------------------------------------------------------------------------------------------------------

对称轴方程是πx + π/6 = π/2 + kπ

即x = 1/3 + k,k∈Z

21/4 ≤ 1/3 + k ≤ 23/4

4又11/12 ≤ k ≤ 5又5/12

所以有整数解k = 5

对称轴方程为x = 16/3