①[(x^2+4)^(1/2)+1]/(x^2+4)^(1/2)=1+1/(x^2+4)^(1/2)
当x=0时有最小值,1+1/(0^2+4)^(1/2)=3/2
②(a^2+1)/a=a+1/a=[a^(1/2)+1/ a^(1/2)]^2-2
当a=1时有最小值,[1^(1/2)+1/ 1^(1/2)]^2-2=2
③t^2+1/(t^2-1)=( t^2-1)+ 1/(t^2-1)+1
= [( t^2-1)^(1/2)+1/( t^2-1)^(1/2)]^2-1
当t^2-1=1,即t^2=2时有最小值,[( 2-1)^(1/2)+1/(2-1)^(1/2)]^2-1=3
或者(t^2+1)/(t^2-1)=[( t^2-1)+ 2]/(t^2-1) =1+2/(t^2-1)
当t=0时有最小值,1+2/(0^2-1)=-1
综上,最小值为2的代数式只有②