有以下三个代数式: 1.[根号(x^2+4)]+1/根号(x^2+4) 2.(a^2+1)/a 3. t^2+1/(t^
3个回答

①[(x^2+4)^(1/2)+1]/(x^2+4)^(1/2)=1+1/(x^2+4)^(1/2)

当x=0时有最小值,1+1/(0^2+4)^(1/2)=3/2

②(a^2+1)/a=a+1/a=[a^(1/2)+1/ a^(1/2)]^2-2

当a=1时有最小值,[1^(1/2)+1/ 1^(1/2)]^2-2=2

③t^2+1/(t^2-1)=( t^2-1)+ 1/(t^2-1)+1

= [( t^2-1)^(1/2)+1/( t^2-1)^(1/2)]^2-1

当t^2-1=1,即t^2=2时有最小值,[( 2-1)^(1/2)+1/(2-1)^(1/2)]^2-1=3

或者(t^2+1)/(t^2-1)=[( t^2-1)+ 2]/(t^2-1) =1+2/(t^2-1)

当t=0时有最小值,1+2/(0^2-1)=-1

综上,最小值为2的代数式只有②