考试中 1在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b²+c²)=3a²+2bc.(1)若sinB=∝√
1个回答

∵ 3(b²+c²)=3a²+2bc

∴3(b²+c²-a²)=2bc

∴ (b²+c²-a²)/2bc=1/3=cosA

∵(cosA)²+(sinA)²=1

∴(sinA)²=1-1/9=8/9

∴sinA=2√2/3

(1)sinB=√2cosC

∴ sin(A+C)=√2cosC

∴ sinAcosC+cosAsinC=√2cosC

∴ (2√2/3)cosC+(1/3)sinC=√2cosC

∴ (1/3)sinC=(√2/3)cosC

∴ tanC=sinC/cosC=√2

(2)S=(1/2)bcsinA=√2/2

∴ bc*(2√2/3)=√2

∴ bc=3/2 ①

由余弦定理

a²=b²+c²-2bccosA

∴ 4=b²+c²-2*(3/2)*(1/3)

∴ b²+c²=5 ②

∴ (b+c)²=b²+c²+2bc=8

(b-c)²=b²+c²-2bc=2

∴ b+c=2√2,b-c=√2 (∵b>c)

∴ b=2√2/3, c=√2/2

3.

f(x)=sin(2x+π/6)-cos(2x+π/3)+2cos²x

=(sin2xcosπ/6+cos2xsinπ/6)-(cos2xcosπ/3-sin2xsinπ/3)+(cos2x+1)

=√3/2sin2x+1/2cos2x-1/2cos2x+√3/2sin2x+cos2x+1

=√3sin2x+cos2x+1

=2(√3/2sin2x+1/2cos2x)+1

=2(sin2xcosπ/6+cos2xsinπ/6)+1

=2sin(2x+π/6)+1

所以(1)f(π/12)=2sinπ/3+1=√3+1.

(2)当2x+π/6=π/2+2kπ (k∈Z)时,即x=π/6+kπ ( k∈Z)时,

sin(2x+π/6)取得最大值1,从而f(x)取得最大值3