求纯粹平面几何方法,平面解析几何和向量的都不算,好的再追加100分.
1个回答

应该是AE,EF,FB能构成直角三角形吧?

发图有点慢,所以就先不发了,需要的话我再补图.

好在辅助线也不太复杂:连OD,CD,AD,BD,并设PE与AD,BD分别交于G,H.

∵C是弧AB中点,AB是⊙O的直径,

∴△ABC是等腰直角三角形,AC = CB,∠CBA = 45°.

∵PD切⊙O于D,

∴OP ⊥ PD,∠DOP = 90°-∠APD.

又∵∠DCB是弧BD所对的圆周角,

∴∠DCB = ∠DOB/2 = 45°-∠APD/2.

∵PF平分∠APD,

∴∠FPB = ∠APD/2,

∴∠CFE = ∠BFP = ∠CBA-∠FPB = 45°-∠APD/2 = ∠DCB.

于是CD // PE (内错角相等,两直线平行).

可得AE/EC = AG/GD,CF/FB = DH/HB (平行线分线段成比例).

由切割线定理,PD² = PA·PB,即PA/PD = PD/PB.

而在△APD中由内角平分线性质定理有AG/GD = PA/PD.

同理在△DPB中有DH/HB = PD/PB.

∴AE/EC = AG/GD = PA/PD = PD/PB = DH/HB = CF/FB,

∴AE/AC = AE/(AE+EC) = CF/(CF+FB) = CF/CB.

∵AC = CB,

∴AE = CF,且EC = AC-AE = CB-CF = FB.

于是△ECF就是以AE,EF,FB为边长的直角三角形.

AE,EF,FB能构成直角三角形,证毕.