已知:P为△ABC的中位线MN上任意一点,BP、CP的延长线分别交对边AC、AB于D、E,求证:AD/DC+AE/ED=
1个回答

原题目中“求证:AD/DC+AE/ED=1 “这里可能是笔误了,应为“求证:AD/DC+AE/EB=1 ”

如果是这样,证明如下,如果不是则结论难以成立.

证明:

∵ AD/DC = (2CN-DC)/DC = 2CN/DC - 1 = 2(DC-DN)/DC - 1 = 1 - 2DN/DC = 1 - 2PN/BC

AE/EB = (2BM-EB)/EB = 2BM/EB - 1 = 2(EB-EM)/EB - 1 = 1 - 2EM/EB = 1 - 2PM/BC

∴ AD/DC + AE/EB = (1-2PN/BC) + (1-2PM/BC) = 2 - 2(PN/BC+PM/BC) = 2 - 2MN/BC

∵ MN是△ABC的中位线 MN = 1/2 BC

∴ AD/DC + AE/EB = 2 -2*1/2 = 1