由边长关系可知△ABC是等腰直角三角形,∠ACB = 90°
以O点为原点,过O点且平行BC边直线为x轴,AC为y轴,OA1为z轴建立空间直角坐标系(右手系)
则A(0,-a/2,0),B(a,a/2,0),C(0,a/2,0),A1(0,0,a)
由AC向量和AA1向量,可得平面AC1的法向量n = (1,0,0)
而AB向量m = (a,a,0)
cos = a/[√1*√(a^2 + a^2)] = √2/2
所以AB与平面AC1夹角为45°
由AB向量和AA1向量,可得平面ABB1A1的法向量k = (2,-2,1)
cos = 2/[√1*√(2^2 + 2^2 + 1^2)] = 2/3
经判断,平面ABB1A1与平面ACC1A1夹角为锐角
所以平面ABB1A1与平面ACC1A1夹角为arccos (2/3)