若抛物线y²=x上存在关于直线l:y-1=k(x-1)对称的两点,求实数k的取值范围
收藏:
0
点赞数:
0
评论数:
0
1个回答

设对称的两点A(x1,y1),B(x2,y2),AB的中点M(x0,y0),设直线AB的方程为y=(-1/k)x+b,根据判别式>0得到一个含k,b的不等式.再根据M在对称轴上,得到k,b的关系,消掉b,解关于k的不等式就得到了.还可以根据点M在抛物线内建立不等式.

点差法的典型.最后结果应该是(-2,0)

详对称两点:(x1,y1),(x2,y2)

∴(y1-y2)/(x1-x2)=-1/k

y1^2=x1┄┄┄┄┄┄┄┄(1)

y2^2=x2┄┄┄┄┄┄┄┄(2)

(1)-(2)

y1^2-y2^2=x1-x2

两边同除以x1-x2得、

∴-(y1+y2)/k=1

∴y1+y2=-k

中点是(m,n)

∴n=-k/2

将n=-k/2代入n=k(m-1)+`1并解得

m=(k-2)/2k

∴中点为( (k-2)/2k,-k/2 )

∵中点在抛物线y^2=x内部

∴(-k/2)^2

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识