设a[n] = (ln(n))^n/n!,则a[n+1]/a[n] = (ln(n+1))^(n+1)/(ln(n))^n·n!/(n+1)!
= ln(n+1)/(n+1)·(ln(n+1)/ln(n))^n
= ln(n+1)/(n+1)·(1+ln(1+1/n))^n
≤ ln(n+1)/(n+1)·(1+1/n)^n (由不等式ln(1+x) ≤ x)
≤ ln(n+1)/(n+1)·e
于是由lim{n→∞} ln(n+1)/(n+1) = 0,得lim{n→∞} a[n+1]/a[n] = 0.
存在N,使n > N时a[n+1]/a[n] < 1/2.
可得a[n] < a[N]/2^(n-N),0 ≤ lim{n→∞} a[n] ≤ lim{n→∞} a[N]/2^(n-N) = a[N]·2^N·lim{n→∞} 1/2^n = 0.
故a[n] = (ln(n))^n/n!收敛到0.