一道关于数列的数学题12.0分) 已知数列{an}的首项为a1,前n项和为Sn,且(Sn/n,S(n+1)/(n=1))
3个回答

解:由于点(sn/n,sn+1/n+1)在直线y=x-p上

则有:

S(n+1)/(n+1)=Sn/n-p

则:

S(n+1)/(n+1)-Sn/n=-p

则:{Sn/n}为公差为-p的等差数列

则:Sn/n=S1/1-p(n-1)

=a1-p(n-1)

则:Sn=a1n-p(n-1)n

=-pn^2+(a1+p)n

=-pn^2+(a+p)n

则:n>=2时,

an=Sn-S(n-1)

=[-pn^2+(a+p)n]-[-p(n-1)^2+(a+p)(n-1)]

=-2pn+(a+2p)

又a1=-2p*1+a+2p=a

则:

an=-2pn+(a+2p)(n属于N*)

(2)

S10=10(a1+a10)/2, a10=-20p+a+2p=-18p+a

=-90p+10

又S9=-72p+9

S11=-110p+11

且S10最大

则:S10>=S9,S10>=S11

-90p+10>=-72p+9

1>=18p

p=-110p+11

20p>=1

p>=1/20

故p的范围是[1/18,1/20]