(1)
对f(x)求导:
f'(x)=3ax^2+2bx+c
由题意f'(0)=0故c=0
(2)
f'(x)=x(3ax+2b),且[0,2]和[4,5]上有相反的单调性
故有2≤-2b/3a≤4
故-6≤b/a≤-3
(3)
由题意f(2)=0,故8a+4b+d=0
f(x)
=ax^3+bx^2-8a-4b
=(x-2)[ax^2+(2a+b)x+4a+2b]
故AC
=√[(b+2a)^2/a^2-4(4a+2b)/a]
=√(t^2-4t-12).(这里设t=b/a)
由(2)知-6≤t≤-3
故3≤AC≤4√3