a=(cosα-1,√3m),b=(3,sinα),α∈(0,π/2)
(1)m=1时,a=(cosα-1,√3),b=(3,sinα)
a·b=3cosα-3+√3sinα=0,2√3cos(α-π/6)=3
所以cos(α-π/6)=√3/2
因为α∈(0,π/2),所以α-π/6=π/6,α=π/3.
(2)m=2√3/3时,a+b=(cosα+2,sinα+2)
|a+b|=√[(2+cosα)²+(2+sinα)²]=√(9+4(sinα+cosα)
=√[9+4√2sin(α+π/4)]
所以当α=π/4时,|a+b|取得最大值√(9+4√2)=2√2+1.