已知直线l:y=kx,圆C:x 2 +y 2 -2x-2y+1=0,直线l交圆于P、Q两点,点M(0,b)满足MP⊥MQ
1个回答

(1)∵C:x 2+y 2-2x-2y+1=0∴b=1时,点M(0,1)在圆上.又MP⊥MQ,圆心(1,1)在直线直线l:y=kx上,故k=1

(2)设P(x 1,y 1),Q(x 2,y 2).

联立方程组,

y=kx

x 2 + y 2 -2x-2y+1=0. ⇒(1+k 2)x 2-2(1+k)x+1=0, ⇒ x 1 + x 2 =

2(1+k)

1+ k 2 , x 1 x 2 =

1

1+ k 2 .

∵MP⊥MQ∴

MP •

MQ =0 ,即x 1x 2+(y 1-b)(y 2-b)=0.

又y 1=kx 1,y 2=kx 2,∴(1+k 2)x 1x 2-kb(x 1+x 2)+b 2=0,

∴ (1+ k 2 )

1

1+ k 2 -kb

2(1+k)

1+ k 2 + b 2 =0.

当b=0时,此式不成立,

从而 b+

1

b =

2 k 2 +2k

1+ k 2 =2+

2(k-1)

(k-1) 2 +2(k-1)+2 . .

又∵k>3,令t=k-1>2,∴ b+

1

b =2+

2

t+

2

t +2 .

令函数 g(t)=t+

2

t +2 ,当t>2时, g′(t)=1-

2

t 2 >0 ,g(t)>5,从而 2<b+

1

b <

12

5 .

解此不等式,可得

6-

11

5 <b<1 或 1<b<

6+

11

5 .