已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.
1个回答

(Ⅰ)设P(x1,y1),Q(x2,y2),

由题设条件可得x1x2+y1y2=0,将y=kx-1代入圆C:(x-1)2+y2=1得(1+k2)x2-2(1+k)x+1=0,

故有x1+x2=

2+2k

1+k2,x1x2=

1

1+k2,

又y1y2=(kx1-1)(kx2-1)=k2x1x2-k(x1+x2)+1=

k2

1+k2−

2k+2k2

1+k2+1=[1−2k

1+k2

1−2k

1+k2+

1

1+k2=0,得k=1;

(Ⅱ)设P,Q两点的坐标为(X1,kX1-1),(X2,kX2-1)

则由圆C:(x-1)2+y2=1及直线l:y=kx-1

得(k2+1)x2-2(k+1)x+1=0

则X1•X2=

1

k2+1,X1+X2=

2(k+1)

k2+1

/MP]=(X1,kX1-1-b),

MQ=(X2,kX2-1-b)

由MP⊥MQ则

X1•X2+(kX1-1-b)•(kX2-1-b)=0

2k2+2k

k2+1=(b+1)+

1

(b+1)

∵b∈(−

1

2,1),∴

1

2<b+1<2,