AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证
1个回答

分析:

(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;

(2)首先设BC=x,则AC=x-2,由在Rt△ABC中,AC^2+BC^2=AB^2,可得方程:(x-2)^2+x^2=4^2,解此方程即可求得CB的长,继而求得CE的长.

(1)证明:

∵AB为⊙O的直径,

∴∠ACB=90°,

∴AC⊥BC,

∵DC=CB,

∴AD=AB,

∴∠B=∠D;

(2)

设BC=x,则AC=x-2,

在Rt△ABC中,AC^2+BC^2=AB^2,

∴(x-2)^2+x^2=4^2,

解得:x1=1+根号7,x2=1-根号7(舍去),

∵∠B=∠E,∠B=∠D,

∴∠D=∠E,

∴CD=CE,

∵CD=CB,

∴CE=CB=1+根号7