中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识.其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了.稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2 亦即:a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的.其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多.如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年.其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52).所以现在数学界把它称为勾股定理,应该是非常恰当的.在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达.书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦.”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 亦即:c=(a2+b2)(1/2) 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:4×(ab/2)+(b-a)2=c2 化简后便可得:a2+b2=c2 亦即:c=(a2+b2)(1/2)
最新问答: 某班级对学生订阅A.B两种报纸进行调查,订A报的有24人B报的有17人,只订A报的人是只订B报人的2倍. 两道一元二次题.2、3题 什么不进则退?什么日见人心 把2.5.6.8填入方格内,算出最大的商和最小的商,怎样填商恰好是3.3125 一个圆柱体比和它等底等高的圆锥体体积大25立方厘米,那么圆柱体和圆锥体体积的和是______. PA切圆O于A,割线PBC交圆O于B,C,PD垂直AB于D,延长PD交AO的延长线于E,连接CE并延长,交圆O于F,连接 last,the,fortunately,caught,train,at,I,minute,the组成一句话 已知函数f(x)=x aInx,其中a为常数,且a≦1 计算一道数学题(把过程完整得写出来) 二次函数图像位置怎么描述 设向量a=(4,1),向量b=(-6,7)非零向量p垂直(向量a-向量b),求向量p,向量a的夹角的大小. 在英语中,各种动物的窝“家”讲法各有不同,哪位大师详细跟我讲讲. 英语翻译miracle 歌手:cascada 专辑:every time we touch boy meets girl (2012•遵义县模拟)求图中阴影部分的面积. 74,38,18,10,4,的规律 同学之间1只千纸鹤加一个星星啥意思? “低碳生活”倡导我们在生活中所耗用的能量、材料要尽量减少,从而减低二氧化碳的排放量,下列做法不符合“低碳生活”理念的是 现有一枚质地均匀的骰子,连续投掷两次,计算: 能装500克水的瓶子,能够装某种液体400克,求这种液体的密度. 卤族元素的问题1.不用任何化学试剂即可鉴别的是A.氯化氢 溴化氢 碘化氢 B.氯水 溴化钠溶液 盐酸C.氯化钠溶液 溴化